凌涛 教授
新能源材料研究所
电话:无
Email:lingt04@tju.edu.cn
研究所:新能源材料研究所
工作经历
2017.10-至今 304永利登录入口304永利登录入口 教授
2015.10-2016.10 澳大利亚阿德莱德大学 访问学者
2013.06-2017.10 304永利登录入口304永利登录入口 副教授
2009.10-2013.06 304永利登录入口304永利登录入口 讲师
教育经历
2004.09-2009.07 清华大学材料系 博士学位
2000.09-2004.07 电子科技大学微固学院 学士学位
研究方向
• 新型能源转换材料(电催化、光电催化)
• 新型能源存储材料(金属-空气电池、太阳能电池、超级电容器)
承担项目
• 国家自然科学基金优秀青年基金项目,催化新材料表面原子结构调控和性能研究,51722103,2018.01.01-2020.12.31,主持
• 天津自然科学基金杰出青年基金项目,金属与载体间电子相互作用对负载型金属电催化剂性能的调控,19JCJQJC61900,2019.10-2023.09,主持
• 国家自然科学基金面上项目,“金属/氧化物界面“协同”活性位点——突破贵金属析氧催化剂活性及稳定性的限制,52071231,2021.01-2024.12,主持
• 国家自然科学基金面上项目,“活性气体与金属原子”复合团簇气相自组装合成无支撑原子级厚度活泼金属纳米片,51571149,2016.01-2019.12,主持
• 国家自然科学基金青年项目,三维有序密堆量子点太阳能电池的构建及电荷传输机制研究,51102176,2012.01-2014.12,主持
• 天津市应用基础与前沿技术研究计划一般项目,CdS反蛋白石结构应用于高效率无偏压光电催化制氢,15JCYBJC18200,2015.04-2018.03,主持
• 天津市应用基础与前沿技术研究计划一般项目,新型高效蜂窝状CdS量子点太阳能电池的研究,11JCYBJC02000,2011.04-2014.03,主持
标志性成果
开发气相金属离子交换新方法,构建多种催化材料体系“宏观-微观-原子”跨尺度多级结构;调控电解水制氢材料活性晶面、晶格应力、缺陷和掺杂等表界面原子结构,揭示材料表界面原子/电子结构和催化性能之间关联,突破催化材料活性和稳定性限制;创造催化材料和电解液界面分子尺度的反应微环境,实现高效稳定的天然海水电解制氢。以第一/通讯作者在Nature Energy、Nature Communications (3篇)、Science Advances、Advanced Materials (7篇)、Angewandte Chemie (3篇)、Nano Letters、Advanced Functional Materials、Nano Energy等期刊发表论文50余篇,10篇入选ESI高被引论文,被Science、Nature Energy选为研究亮点。
学术奖励
2017年获国家自然科学基优秀青年科学基金
2019年获天津市自然科学基杰出青年科学基金
2017年入选北洋青年学者计划
2015年获天津市自然科学一等奖(排名3)
2009年获清华大学一等奖学金
2004年入选四川省优秀毕业生
2004年入选电子科技大学杰出学生
代表性论文
[1] Guo J, Zheng Y, Hu Z, Zheng C, Mao J, Du K, Jaroniec M, Qiao S Z, Ling T*. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst, Nat. Energy 2023, 8, 264-272 [Highlighted by Science].
[2] Liu H, Ling T*. Monitoring in situ evolution of electrochemical materials. Joule 2023, 7, 861-862.
[3] Yang Y, Hu C, Shan J, Cheng C, Han L, Li X, Wang R, Xie W, Zheng Y, Ling T*. Electrocatalytically activating and reducing N2 Molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. 2023, 62, e202300989.
[4] Du K, Zhang L, Shan J, Guo J, Mao J, Yang C, Wang C, Hu Z, Ling T*. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation, Nat. Commun. 2022, 13, 5448 [Selected as 50 best papers in Catalysis on Nature Communications].
[5] Wang R, Zhang L, Shan J, Yang Y, Lee J, Chen T, Mao J, Zhao Y, Yang L, Hu Z, Ling T*. Tuning Fe spin moment in Fe–N–C catalysts to climb the activity volcano via a local geometric distortion strategy, Adv. Sci. 2022, 9, 2203917.
[6] Zhao E, Du K, Yin P, Ran J, Mao J, Ling T*, Qiao S Z. Advancing photoelectrochemical energy conversion through atomic design of catalysts. Adv. Sci. 2022, 9, 2104363.
[7] Ling T*, Jaroniec M, Qiao S Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32, 2001866.
[8] Mu C, Mao J, Guo J, Guo Q, Li Z, Qin W, Hu Z, Davey K, Ling T*, Qiao S Z. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Adv. Mater. 2020, 32, 1907168.
[9] Yang Y, Zhang L, Hu Z, Zheng Y, Tang C, Chen P, Wang R, Qiu K, Mao J, Ling T*, Qiao S Z. The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 2020, 59, 4525 [VIP paper].
[10] Ling T*, Zhang T, Ge B, Han L, Zheng L, Lin F, Xu Z, Hu W-B, Du X-W, Davey K, Qiao S Z. Well dispersed nickle and zinc tailored electronic structure of transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 2019, 31, 1807771 [ESI highly cited paper].
[11] Ling T, Da PF, Zheng XL, Ge BH, Hu ZP, Wu MY, Du XW, Hu WB, Jaroniec M, Qiao S Z. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 2018, 4, eaau6261 [Highlighted by Nature Energy].
[12] Li Y-J, Cui L, Da P-F, Qiu K-W, Qin W-J, Hu W-B, Du X-W, Davey K, Ling T*, Qiao S-Z. Multi-scale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high-power density. Adv. Mater. 2018, 30, 1804653.
[13] Zhang T, Wu M-Y, Yan D-Y, Mao J, Liu H, Hu W-B, Du X-W, Ling T*, Qiao S Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 2018, 43, 103-109 [ESI highly cited paper].
[14] Ling T, Yan D Y, Wang H, Jiao Y, Hu Z P, Zheng Y, Zheng L R, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z. Activating cobalt (II) oxide nanorods for highly efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509 [ESI highly cited paper].
[15] Meng C, Ling T*, Ma T Y, Wang H, Hu Z P, Zhou Y, Mao J, Du X W, Jaroniec M, Qiao S Z. Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 2017, 29, 1604607 [ESI highly cited paper].
[16] Ling T, Yan D Y, Jiao Y, Wang H, Zheng Y, Zheng X L, Mao J, Du X W, Hu Z P, Jaroniec M, Qiao S Z. Engineering surface atomic structure of single-crystal cobalt (Ⅱ) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876 [ESI highly cited paper].
[17] Zheng X L, Song J P, Ling T*, Hu Z P, Yin P F, Davey K, Du X W, Qiao S Z. Strongly coupled Nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution. Adv. Mater. 2016, 28, 4935-4942 [Back inside cover].
[18] Ling T, Wang J J, Zhang H, Song S T, Zhou Y Z, Zhao J, Du X W. Freestanding ultrathin metallic nanosheets: materials, synthesis, and applications. Adv. Mater. 2015, 27, 5396-5402.
[19] Ling T, Kulinich S A, Zhu Z L, Qiao S Z, Du X W. Highly conductive CdS inverse opals for photochemical solar cells. Adv. Funct. Mater. 2014, 24, 707-715.
[20] Ling T, Xie L, Zhu J, Yu H M, Ye H Q, Yu R, Cheng Z Y, Liu L, Yang G W, Cheng Z D, Wang Y J, Ma X L. Icosahedral face-centered cubic Fe nanoparticles: Facile synthesis and characterization with aberration-corrected TEM. Nano Lett. 2009, 9, 1572-1576.